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Chemical processes governed by the laws of diffusion kinetics can be intensified by elastic oscillations. It

is also known that the rate of combustion of liquid and solid fuels changes markedly with the onset of acous-
tic vibrations in the combustion chamber. Despite the extensive application of vibrational processes in
technology, the mechanisms of heat and mass transfer in the presence of vibrations are not well known,

The aim of this research was to analyze the mass transfer from a sphere in an acoustic field,

Notation
w - angular frequency of oscillations, m, — concentration of diffusing
A — wavelength; component at surface of
R - characteristic dimension of vaporization;
axisymmetric body, t —time;
s — amplitude of displacement of D - diffusion coefficient
fluid particles in a plane p — average density of mixture;
acoustic wave, erf — error function;
B — amplitude of oscillation velocity, r — radius of axisymmetric body;
X, y — longitudinal and transverse R — Reynolds number; ‘
coordinates, P - diffusion Prandtl number;
u, v — longitudinal and transverse velocity components, <> — time average;
vV — kinematic viscosity, N, N4g-— Nusselt numbers based
U — A(x) coswt — velocity of potential on radius and diameter,
flow, respectively;
&* — thickness of momentum boundary layer, ' - pulsating component of velocity
&= — thickness of diffusion boundary or concentration;
layer, o — stationary component of
m — dimensionless concentration, velocity or concentration.

1. Consider an axisymmetric body immersed in a fluid perturbed by a plane acoustic wave. The main assumptions
are as follows:

a,
b.

C.

d.

The density of the mixture is constant. The velocity field is independent of the concentration field.
The viscosity of the gas and the diffusion coefficient are independent of the concentration field,
The body is perfectly rigid.

The wavelength of the acoustic oscillations is much longer than the characteristic dimension of the body

(A/R > 1), which makes it possible to regard the fluid near the wall of the body as incompressible,

=%

The oscillatory Reynolds number wR*/v is sufficiently large, i.e., the boundary-layer equations may be used.

With these assumptions one may distinguish two limiting cases — when the amplitude of particle displacement is
much larged (s/R > 1) or much smaller (s/R < 1) than the dimension of the body.

2. Let us analyze the hydrodynamics of the process for the case when s/R < 1. Experimental investigations [2, 3]

show that in this case there is a steady secondary flow near the body. With the above assumptions, the equations of con-
tinuity and momentum and the boundary conditions in the oxy coordinate system (Fig. 1) are

| o a a
u=U=A(z)cos ot at y=os, u=v=0 at y=0, (2. 2)
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This problem can be solved by the method used by Schlichting [4] in the analysis of the boundary layer on a cy-
lindrical body. Let us represent the velocity field as a sum u = u' + .

With the assumption s/R < 1, the equations governing the pulsating component of velocity are

o w9l w=5 aty=0,
3t—“v5;f'—_¢??’ w=U=A(z)costwt at y=oc. (2.3)

The solution of (2. 3) is

u =4 (x) [eos ®f ~— ¢ cos (of — ﬁ)] M=y9V o2v). (2. 4
The normal velocity component v* is deterr_hined from the equation of continuity (2. 2).

The equation for the component of velocity is

vt (a2 4 Lo 2 - (U

Evaluating the averaged terms, we obtain

-3—2%‘1 -—-MM[«;"‘(Z—{—@)cosn——-e""(i——n)sinn——e“"“]—~
k 1 or (x) A2 (w) @9
— e ——[ne~" (cos n + sin n) — e-" sin 1],
which, taking into account the boundary conditions
u0=0 at 'r]=0, auo/an_=0 at 1N = o0,
yields the result
u0 = Aa(]x) agiw) [ -ne~" (sin N — cos ) + ™ (2s1n n —f~ 5~ cos n) -+
1 3 A@)bA (=) A% () or(2)
+z"“"]—zf © oz —_mr(ay) 3o {'z“ (2.9

—_~[ ( +1)smq+ 1~—~n)cosn}}>

Equation (2. 6) for the stationary component of the velocity differs from Schlichting’s solution in virtue of the pres-
ence of the terms in braces, wluch are due to axisymmetry, Ana1y31s of equations (2, 5) and (2. 6) shows that the mo-
mentum boundary-layer thickness is the same for the stationary and pulsating components and is equal to

8" =} 2v/o.
Outside the mementum boundary layer, the longitudinal velocity component is given by

3 A@AE 1 A (@)
b="F o & 2ot e

4+ A (x)coswt . 2"

In the case of a sphere 7 (z) = Rsinz/R, A(z) =3/ B sin (z/R), sothat fory > & the equation for u,
becomes '

4y = —1.4B% (0R)™ sin (2z | R) . @y

A solution of the system (2. 1), (2. 2) was obtained by Roy [5], but this contains an error due to the wrong choice of
sign in the expression for the transverse velocity component.

3. Let us calculate the distribution of concentration over the surface of the sphere for s/R < 1. As the stationary
flow is directed towards the equator of the sphere (Eq. (2. 8)), we must write the diffusion equation in the o'xy coordi-
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nate system (Fig. 1)

2m

om am om
o tia tog =Dy @D

By analogy with the velocity field, let us represent the concentration field in the form

’
where my, m' are the stationary and pulsating concentration components, respectively.

Substituting (3. 2) into (3. 1), and averaging Eq. (3. 1) term by term according to Reynolds's, we obtain

Imy dmy %my < ,3m'> A < , 0m’
UGy TGy = Dgr — W5 ) =\ %) @3
The boundary conditions associated with (3. 3) are
my=m* at y=0, my=0 at y=—oo,

The ratio of the momentum and diffusion boundary-layer thicknesses is

s e ey (o= (3)").

When P = 1 and s/R < 1 the momentum boundary layer lies wholly in-
side the diffusion boundary layer. Neglecting the diffusion resistance of the
momentum boundary layer, we obtain, in the o'xy system (Fig. 1), the re-
sults

. B . 2z _ 9 (uor)
'uo == 1'4671'- sin —--, Up = - S 797 —3 Y
0
3. 4
W = > B sin% cos ot 9
=3 B .
, 3B . = . '
V= sin (y cos ol —
Fig. 1 (3.5

1 44 1 e . v
——2——6 cosmt——é—§ smmt).

The variable radius of the sphere in the new system of coordinates is given by r = Reos (x/R).

Equation (3. 3) contains the unknown value of the pulsating component of the concentration m' in the diffusion
boundary layer. Using Lighthill's theory [6], m* can be determined from

’ .0 , 0 .
m = — Su 6-—'2°dt-——gv -gé-"dt w>8). (3. 6)

Using (8. 6) and (3. §), one can calculate the pulsating mass transfer terms
am> < 2.0m” 9 B®¥*trM e 9% 0me
+ I om [2 cos® g —sin R]—a-f’ @7,

which are 8" times smaller than the convective mass transfer terms in (3. 3). If we neglect the pulsating mass transfer
terms, Eq. (3. 3) can be reduced to the form

2, ‘ o ¢
ag(;o =D ?91;;0 ‘ (9 — S uortdz, 'q):S uord)y) , (3. 8)
: : b k
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with the boundary conditions
m=m* at =0, Me=0 at =00, Mp=0 at =0, 0=0, (3.9

The solution to (3. 8), taking into account (3. 9), is the well-known function

mo = m* (1 — erf ~—¥_
0 ( Y DB) : (3. 10)
In accordance with (3. 10) the dimensionless mass transfer coefficient t
l -B® ' cosé @ z
- — | D o —e———— =Sl
N =1.89 3= ( T @ R), 3. 11)

Taking into account the pulsating mass transfer terms in (3. 3), one ob-
tains

_ B® exp [— (a‘D)?] » Fig. 2
N=1.89 VoD (a®) (3.12)

(@ =0.95 S/RP)': .

Regarding Eq. (8. 12), it should be noted that the intensification of mass transfer due to velocity pulsation is negli-
gibly small, i.e., for all practical purposes one may use Eq. (3.11), which, averaged over the sphere, yields

Ny = 1.33/]/55 . (3.13)

4. The aim of the experimental investigation of mass transfer from a sphere in an acoustic field was to establish
the dependence of the dimensionless mass transfer coefficient on the parameters of the acoustic field for the case when
s/R < 1 and A/2mR = 1 (when A /2TR < 1 second-order effects appear — reflection of the sound wave from the body sur-
face, formation of a "sound shadow, " etc.). The experiments were carried out with camphor balls evaporating into a
field of standing acoustic waves of frequency 11. 5 and 18 ke and intensity 150-163 db (0. 1-2. 15 W/cm?). The sound
generatar was electrodynamic emitter, which made it possible to produce harmonic oscillations of rigorously controlied
frequency, determined by the geometric dimensions of the emitter.

To avoid effects of porosity, the balls were prepared by immersing a spherical metal core for a short time in the
vapor of boiling camphor. The balls thus produced had a diameter of 3, 5, 6, or 10 mm with 2 surface layer of cam-
phor 0. 1-0, 2 mm thick. Microscopic examination of ball surfaces did not reveal any cracks or pores.

To investigate the role of secondary flow in mass transfer, we carried out experiments to determine local mass
transfer coefficients, A camphor ball, welded to a special holder, was mounted on the object state of a IZA-2 horizon-
tal comparator, operating with a MOV-1-15 ocular screw rhicrometer (the total error of linear measurement was 2-3
1.

The diameter of the ball was measured at five positions dy — dg (Fig. 2) before the after evaporation in the acous-
tic field. Figure 2 presents the results of the local mass transfer measurements. Analyzing the curve which represents
the change in ball diameter over the surface, one sees that the "wear” was highest at those points of the ball surface
that formed the forward stagnation points of the secondary flow, and lowest at the points where the secondary flow left
the surface. The broken line, constructed from Eq. (3. 11), is in satisfactory agreement with the experimental results
(continuous line). Thus, it appears that the secondary flow is the main factor governing the intensity of mass transfer
from a surface in an acoustic field. Experiments to determine the over-all mass transfer coefficients were carried out
by the weighing method, The outer geometric surface of the ball was taken to be the surface of evaporation, Its diam-
eter was measured on the comparator,

The intensity of the acoustic oscillations was measured by means of an AZ-2 acoustic probe, connected to a VZ-2A
voltmeter and an oscilloscope.

The spherical barium titanate sensor of the acoustic probe and the camphor ball with its holder were mounted over
the sound emitter in a special support, which made it possible to hold the ball at an antinode of the sound wave,

The change in weight of the balls was measured by weighing on an ADV-200 analytic balance before and after the
experiment,

The air temperature at the evaporating surface was measured by a chromel-copel* thermocouple. The values of

*Cu-Ni alloy.
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the diffusion coefficient of camphor vapor in air and its saturation pressure were taken from [7, 8]

Figure 3 shows the results of the experiments, represented in the form of a relation between the diffusion Nusselt
number N and the dimensionless group B* = (Bz/ wD) 1/2 , which is the Peclet number referred to the velocity of the
secondary flow. The figure also shows the results of theoretical cal-
] culations: curve (1) is based on Eq. (3. 13), curve (2) represents the
o equation Ng = 2+ 1. 3B*. The experimental data correspond to the
o following values of f (ke) and d (mm): points 1 — (18, 6); 2 —

74/% (18, 3. 5); 3 — (11. 5,10); 4 — (11. 5, 6); 5 — (11. 5, 3. 5).
&

As can be seen from the figure, when B* > 3 the dimension-

”d l‘?

N

7 z . 2 less mass transfer coefficient can be determined from Eq. (3. 13),
&/& @S; S ;/7 while for B* < 3 t_he equation Ng = 2+ 1, 3B* is better.
ek v’ P Thus, in an acoustic field with s/R < 1 and A/2mR > 1, the
L dimensionless mass transfer coefficient for a sphere is independent of
g / 8 2 % the diameter of the sphere, increases with increasing sould intensity,
and is inversely proportional to the square root of the frequency.

Fig. 3
5. The case s/R > 1 is always realized in pulsating combustion
chambers. According to Reynst's date [9], the amplitude of particle displacement is 0. 5-1m, i.e., certainly many
times greater than the dimension of the flame particles. Under these conditions the mass transfer process can be re-
garded as quasi-stationary. Mass transfer relations obtained for a steady-state process are valid at each instant for the
quasi-stationary process, If the velocity of the gas varies according to a barmonic law, then using Eckert's equation
Ng = 0. 37 Rg' 6Pl/ 3 (where Ry is the Reynolds number) [10] we obtain the time average

" N, =0.259P" (Bdv)*S .

In conclusion, the authors wish to thank S. S. Kutateladze and I. A. Yavorskii, who supervised the present work.
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