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Chemica l  processes governed by the laws of diffusion kinetics can be intensified by elas t ic  oscillations. It 
is also known that the rate of combustion of liquid and  solid fuels changes markedly  with the onset of acous- 
t ic  vibrations in the combustion chamber. Despite the extensive appl ica t ion  of vibrat ional  processes in 
technology, the mechanisms of heat  and mass transfer in the presence of vibrations are not well  known. 
The aim of this research was to analyze  the mass transfer from a sphere in an acoustic field. 

Notation 

~ o  - angular frequency of oscillationS, 
X - wavelength; 
R - character is t ic  dimension of 

axisymmetr i  c body, 
s - ampl i tude  of d isplacement  of 

fluid par t ic les  in a plane 
acoustic wave, 

B - ampl i tude  of osci l la t ion velocity,  

x, y - longitudinal  and transverse 
coordinates, 

u, v - longitudinal  and transverse veloci ty  components,  
u - k inemat ic  viscosity, 
U - A(x) cos ~ot - ve loc i ty  of potent ia l  

flOW, 
~+ - thickness of momentum boundary layer, 
6- - thickness of diffusion boundary 

layer, 
m - dimensionless concentration, 

N, 

m . -  concentrat ion of diffusing 
component at surface of 
vaporization; 

t - t ime; 
D -- diffusion coeff ic ient  
p - average density of mixture; 

erf  - error funct ion;  

r - radius of ax isymmetr i  c body; 
R - Reynolds number; 
P - diffusion Prandtl numberi 

< > .  t ime  average; 
N d -  Nusselt numbers based 

on radius and diameter ,  
respectively; 

' - pulsating component of  veloci ty  

or concentration; 
0 - stat ionary component of 

veloci ty  or concentrat ion.  

i. Consider an ax isymmetr ic  body immersed in a fluid perturbed by a plane acoust ic  wave. The main  assumptions 
are as follows: 

a. The density of the mixture is constant. The ve loc i ty  field is independent of the concentrat ion field. 

b. The viscosity of the gas and the diffusion coeff ic ient  are independent of the concentrat ion field. 

c. The body is per fec t ly  rigid. 

d. The wavelength of the  acoust ic  oscil lat ions is much longer than the character is t ic  dimension of the body 
(k /R >> 1), which makes it possible to regard the fluid near the wall  of the body as incompressible.  

e. The osci l la tory Reynolds number ~RZ/u is sufficiently large,  i . e . ,  the boundary- layer  equations may  be used. 

With these assumptions one may  distinguish two l imi t ing  cases when the ampl i tude  of par t ic le  d isplacement  is 
much larged (s/R >> 1) or much smal ler  (s/R << 1) than the dimension of the body. 

2. Let us ana lyze  the hydrodynamics of the process for the case when s/R << 1. Experimental  investigations [2, 3] 
show that  in this case there is a s teady secondary flow near the body. With the above assumptions, the equations of con- 

t inui ty and momentum and the boundary conditions in the oxy coordinate  system (Fig. 1) are 

Ou Ou #u . O~u OU OU + U 0 (ur) -t-  0 (re) 
- ~ - - _ _  --g~y = O, (2. i) 

u = U = A ( x )  eoscot at y = ~ ,  u = v = 0  at y=O, (2. 2) 
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This problem can be solved by the method used by Schlichting [4] in the analysis of the boundary layer on a cy- 
lindrical body. Let us represent the velocity field as a sum u = u' + u0. 

With the assumption s/R << 1, the equations governing the pulsating component of velocity are 

On" O~u" OU u ' = 5  at y = 0 ,  
#--'t-- V~y a ~--- ~ ' u ' =  U-----A(~)costo)t at . y = o r  (2.3) 

The solution of (2. 3) is 

u ' =  A (x) [cos o ) t - -e -~  cos ( to t - -  ~l)] (~ = y V(o/2v). 

The normal Velocity component V' is determined from the equation of continuity (2. 2). 

The equation for the component of velocity is 

(2. 4) 

o,~o / , o ~ ' \ .  d ' ~ ' %  _ ou 

Evaluating the averaged terms, weobtain  

a2u0 A(z)  OA (z) [e-~ (2 q-r))  cos  e-~ (t  ~) sin e -2. ] 
a~f. = - -  r T ~  T } - -  - -  q - -  - -  

l Or (z) A 2 (x) fne-~ (cos q + sin q) - -  e-t  sin q] 

which, taking into account the boundary conditions 

n o = 0  at 1 ] = 0 ,  a a o / O ~ = O  at ~1=~r 

(2. 5) 

yields the result 

U 0 ~--- A(x) O A ( x ) ~  0x [~ ~'tle'n (sin TI--  COS ~1) -+- e-t  (2sin T I - ~ 1  COS q ) ' 4 -  

t ] 3 A (x) OA (x) A 2 (x) O r ( x )  ~I__ _ 
"31- 4-" e-2~ - - 4  ~ az (0r(~) ax [2 

e-'/1 

(2. 6) 

Equation (2. 6) for the stationary component of the velocity differs from Schlichting's solution in virtue of the pres- 
ence of the terms in braceS, which are due to axisymmetry. Analysis of equations (% 5) and (2. 6) shows that the mo- 
mentum boundary-layer thickness is the same for the stationary and pulsating components and is equal to 

~+-~ V 2 ~ / o ~ .  

Outside the mementum boundary layer, the longitudinal velocity :cdmponent is given by 

3 A(~) OA(x) t A ~(:v) Or(*) 
�9 u =  4 ~ 0 ,  ~ - ~ r ~  ~7 ~ + A ( x )  c~176 (2.7) 

tn the case of a sphere r (x) = R sin x / R,  ,4 (x) = 3/2 B sin (x / R) ,  so that for y > 6 + the equation for u0 
becomes 

u 0 = - -  1 .4B 2 ((oR) -1 sin (2x / R ) .  (2. 8) 

A solution of the system (2. 1), (2. 2) was obtained by Roy [5], but this comains an error due to the wrong choice of 
sign in the expression for the transverse velocity component. 

3. Let us calculate the distribution of concentration over the surface of the sphere for s/R << 1. As the stationary 
flow is directed towards the equator of the sphere (Eq. (2. 8) ), we must write the diffusion equation in the o'xy coordi- 
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nate system (Fig. 1) 

o~ot + i t  om o,~ _ n 9 'm 

By analogy with the ve loc i ty  field, let us represent the concentration field in the form 

m - -  mo q- rrt' ; 

where m0, m '  are the stationary and pulsating concentration component  s, respectively. 

Substituting (3. 2) into (3. t),  and averaging Eq. (3. 1) term by term according to Reynolds's, 

t t  Omo Omo D O'mo </" ,Om'N> " 
o ~ "b Vo ~ -- ay~ \ u  o:c / <v '  

The boundary conditions associated with (3. 3) are 

m o = m *  at y = 0 ,  r~ o = 0  at y~__oo', 

we obtain 

(3. I) 

(3. 2) 

(~. 3) 

The ratio of the momentum and diffusion boundary-layer  thicknesses is 

o + , ,  co.l',,i 
. ~ . ~ - f f  p l.. at n =  6 ~ ~ uo l I .  

When P - 1 and s/R << 1 the  momentum boundary layer lies wholly in- 
side the diffusion boundary layer. Neglecting the diffusion resistance of the 
momentum boundary layer, we obtain, in the o 'xy system (Fig. 1), the re- 

ao = t . 4  ~ s in  -~- ,  vo = __ d y ,  
0 

iS' 3 = ~- B sin R cos cot, 

3B . x ( 
v ' =  ~ sm ~- y cos cot-- 

(3. 4) 

Fig.  1 (3. 5) 

- -  2t--6+ cos cot__ 21__ 6+s in  co t ) .  

The variable radius of the sphere in the new system of coordinates is given by r = Rcos (x/R). 

Equation (3. 3) contains the unknown value of the pulsating component  of the concentration m '  in the diffusion 
boundary layer. Using Lighthill 's theory [6], m '  can be determined from 

(y>6+). (3. 6) 

Using (3. 6) and (3. 5), one can calcula te  the pulsating mass transfer terms 

. ,  am",, / r  
a=l"4" \  o y / =  4 mg~ ~ -cos  ~ - - - s i n  ~ - ~ - ,  (3.7) 

which are 8 + t imes smaller  than the convect ive mass transfer terms in (3.3). If we neglect  the pulsating mass transfer 

terms, Eq. (3. 3) can be reduced to the form 

x ~ x 

0 k 
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with the boundary conditions 

re=m* at ~p=O, m o = O  at ~ = ~ ,  m o = O  at ~ : 0 ,  0 = 0 .  (3.9) 

The solution to (3.8), taking into account (3. 9), is the well-known function 

oo=m. (,,-errS), 

In accordance with (8. 10) the dimensionless mass transfer Coefficient 

N = 1 . 8 9 ~  ~ = ] I t + c o s ~ r  r �9 (S. 11) 

Taking into account the pulsating mass transfer terms in (8. 3), one ob- 

tains 

B(D exp [-- (ar Fig. 2 
N = i .89  l /~b  (~ )  (3. 12) 

(a ~--- 0.95 S/RP)%, 

Regarding Eq. (3. 12), it should be noted that the intensification of mass transfer due to velocity pulsation is negli- 
gibly small, i. e . ,  for all practical purposes one may use Eq. (3.11), which, averaged over the sphere, yields 

Na = t . 3 B  / l / -~-b .  (a. 13) 

4. The aim of the experimental investigation of mass transfer from a sphere in an acoustic field was to establish 
the dependence of the dimensionless mass transfer coefficient on the parameters of the acoustic field for the case when 
s/R << 1 and k/2~rR - 1 (when k /2vR < 1 second-order effects appear - reflection of the sound wave from the body sur- 
face, formation of a "sound shadow, " etc. ). The experiments were carried out with camphor balls evaporating into a 
field of standing acoustic waves of frequency 11.5 and 18 kc and intensity 150-163 db (0.1-2. 15 W/cruZ). The sound 
generator was electrodynamic emitter, which made it possible to produce harmonic oscillations of rigorously controlled 

frequency, determined by the geometric dimensions of the emitter. 

To avoid effects of porosity, the balls were prepared by immersing a spherical metal core for a short time in the 
vapor of boiling camphor. The balls thus produced had a diameter of 3, 5, 6, or 10 mm with a surface layer of cam- 
phor 0.1-0. 2 mm thick. Microscopic examination of ball surfaces did not reveal any cracks or pores. 

To investigate the role of secondary flow in mass transfer, we carried out experiments to determine local mass 
transfer coefficients. A camphor ball, welded to a special holder, was mounted on the object state of a IZA-2 horizon- 
tal comparator, operating with a MOV-I-15 ocular screw micrometer (the total error of linear measurement was 2-3 

D- 

The diameter of the bal! was measured at five positions dz - ds (Fig. 2) before the after evaporation in the acous- 
tic field. Figure 2 presents the results of the local mass transfer measurements. Analyzing the curve~which represents 
the change in ball diameter over the surface, one sees that the "wear" was highest at those points of the ball surface 
that formed the forward stagnation points of the secondary flow, and lowest at the points where the secondary flow left 
the surface. The broken line, constructed from Eq. (3. 11), is in satisfactory agreement with the experimental results 
(continuous line). Thus, it appears that the secondary flow is the main factor governing the intensity of mass transfer 
from a surface in an acoustic field. Experiments to determine the over-all mass transfer coefficients were carried out 
by the weighing method. The outer geometric surface of the ball was taken to be the surface of evaporation. Its diam- 

eter was measured on the comparator. 

The intensity of the acoustic oscillations was measured by means of an AZ-2 acoustic probe, connected to a VZ-2A 

voltmeter and an oscilloscope. 

The spherical barium titanate sensor of the acoustic probe and the camphor ball with its holder were mounted over 
the sound emitter in a special support, which made it possible to hold the ball at an antinode of the sound wave. 

The change in weight of the baUs was measured by weighing on an ADV-200 analytic balance before and after the 

experiment. 

The air temperature at the evaporating surface was measured by a chromel-copel* thermocouple. The values of 

*Cu-Ni alloy. 
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the diffusion coeff icient  of camphor vapor in air  and its saturation pressure were taken from [7, 8]. 

Figure 3 shows the results of the experiments,  represented in the form of a relat ion between the diffusion Nusseit 
number N D and the dimensionless group 13" = (BZ/wD) I /z ,  which is the Peclet  number referred to the ve loc i ty  of the 

secondary flow. The figure also shows the results of theoret ica l  ca l -  

t6 

j r  
i 

8 

8" 

Fig. 3 

lh 

culations: curve (1) is based on Eq. (3.13), curve (2) represents the 
equation N d = 2 + 1. 3B*. The exper imenta l  data correspond to the 
following values of f (kc) and d (ram): points 1 - (18, 6); 2 - 
(18, 3.5); 3 - (ii. 5, I0); 4 - (II. 5, 6); 5 - (II. 5, 3. 5). 

As can be seen from the figure, when B* > 3 the dimension- 

less mass transfer coeff ic ient  can be determined from gq. (3. 13), 
while for B* < 3 the equation N d = 2 + 1. 3B* is better. 

Thus, in an acoustic field with s/R < 1 and k /2r rR > 1, the 
dimensionless mass transfer coeff ic ient  for a sphere is independent of 
the d iameter  of the sphere, increases with increasing sould intensity, 
and is inversely proportional to the square root of the frequency. 

5. The case s/R >> 1 is always rea l ized  in pulsating combustion 

chambers. According to Reynst's date [9], the ampl i tude  of par t ic le  d isplacement  is 0 .5 -1  m, i . e . ,  cer ta inly  many 
t imes greater than the dimension of the f lame part icles.  Under these conditions the mass transfer process can be re-  
garded as quasi-stat ionary.  Mass transfer relations obtained for a s teady-s ta te  process are valid at  each instant for the 

quasi-s ta t ionary process. If  the veloci ty  of the gas varies according to a harmonic  law, then using Eckert 's equation 
o 6"I/s N d = 0. 37 R d" P (where R d is the Reynolds number) [10] we obtain the t ime average 

N a ~-- 0.259PV, (Bd/v)  ~ . 

In conclusion, the authors wish to thank S. S. Kutate ladze and I. A. YavorsMi, who supervised the present work. 
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